27 research outputs found

    Chirality as Generalized Spin-Orbit Interaction in Spintronics

    Full text link
    This review focuses on the chirality observed in the excited states of the magnetic order, dielectrics, and conductors that hold transverse spins when they are evanescent. Even without any relativistic effect, the transverse spin of the evanescent waves are locked to the momentum and the surface normal of their propagation plane. This chirality thereby acts as a generalized spin-orbit interaction, which leads to the discovery of various chiral interactions between magnetic, phononic, electronic, photonic, and plasmonic excitations in spintronics that mediate the excitation of quasiparticles into a single direction, leading to phenomena such as chiral spin and phonon pumping, chiral spin Seebeck, spin skin, magnonic trap, magnon Doppler, and spin diode effects. Intriguing analogies with electric counterparts in the nano-optics and plasmonics exist. After a brief review of the concepts of chirality that characterize the ground state chiral magnetic textures and chirally coupled magnets in spintronics, we turn to the chiral phenomena of excited states. We present a unified electrodynamic picture for dynamical chirality in spintronics in terms of generalized spin-orbit interaction and compare it with that in nano-optics and plasmonics. Based on the general theory, we subsequently review the theoretical progress and experimental evidence of chiral interaction, as well as the near-field transfer of the transverse spins, between various excitations in magnetic, photonic, electronic and phononic nanostructures at GHz time scales. We provide a perspective for future research before concluding this article.Comment: 136 pages, 60 figure

    Strong lateral exchange coupling and current-induced switching in single-layer ferrimagnetic films with patterned compensation temperature

    Full text link
    Strong, adjustable magnetic couplings are of great importance to all devices based on magnetic materials. Controlling the coupling between adjacent regions of a single magnetic layer, however, is challenging. In this work, we demonstrate strong exchange-based coupling between arbitrarily shaped regions of a single ferrimagnetic layer. This is achieved by spatially patterning the compensation temperature of the ferrimagnet by either oxidation or He+ irradiation. The coupling originates at the lateral interface between regions with different compensation temperature and scales inversely with their width. We show that this coupling generates large lateral exchange coupling fields and we demonstrate its application to control the switching of magnetically compensated dots with an electric current

    Magnon-bandgap controllable artificial domain wall waveguide

    Full text link
    In this paper, a magnon-bandgap controllable artificial domain wall waveguide is proposed by means of micromagnetic simulation. By the investigation of the propagation behavior and dispersion relationship of spin waves in artificial domain wall waveguides, it is found that the nonreciprocal propagation of spin waves in the artificial domain walls are mainly affected by the local effective exchange field, and the magnon bandgap can be controlled by changing the maximum value of the effective exchange field. In addition, it is observed that the artificial domain wall waveguides are structurally more stable than the natural domain wall waveguides under the same spin wave injection conditions, and the magnon bandgap of the artificial domain wall waveguides can be adjusted by its width and magnetic anisotropy parameters. The bandgap controllable artificial domain wall scheme is beneficial to the miniaturization and integration of magnon devices and can be applied to future magnonic technology as a novel frequency filter

    Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet

    Full text link
    The discovery of magnetism in van der Waals (vdW) materials has established unique building blocks for the research of emergent spintronic phenomena. In particular, owing to their intrinsically clean surface without dangling bonds, the vdW magnets hold the potential to construct a superior interface that allows for efficient electrical manipulation of magnetism. Despite several attempts in this direction, it usually requires a cryogenic condition and the assistance of external magnetic fields, which is detrimental to the real application. Here, we fabricate heterostructures based on Fe3GaTe2 flakes that possess room-temperature ferromagnetism with excellent perpendicular magnetic anisotropy. The current-driven non-reciprocal modulation of coercive fields reveals a high spin-torque efficiency in the Fe3GaTe2/Pt heterostructures, which further leads to a full magnetization switching by current. Moreover, we demonstrate the field-free magnetization switching resulting from out-of-plane polarized spin currents by asymmetric geometry design. Our work could expedite the development of efficient vdW spintronic logic, memory and neuromorphic computing devices

    Ferromagnetic-antiferromagnetic coexisting ground states and exchange bias effects in MnBi4Te7\bf{MnBi_4Te_7} and MnBi6Te10\bf{MnBi_6Te_{10}}

    Full text link
    Natural superlattice structures (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2,...), in which magnetic MnBi2Te4\rm{MnBi_2Te_4} layers are separated by nonmagnetic Bi2Te3\rm{Bi_2Te_3} layers, hold band topology, magnetism and reduced interlayer coupling, providing a promising platform for the realization of exotic topological quantum states. However, their magnetism in the two-dimensional limit, which is crucial for further exploration of quantum phenomena, remains elusive. Here, complex ferromagnetic (FM)-antiferromagnetic (AFM) coexisting ground states that persist up to the 2-septuple layers (SLs) limit are observed and comprehensively investigated in MnBi4Te7\rm{MnBi_4Te_7} (nn = 1) and MnBi6Te10\rm{MnBi_6Te_{10}} (nn = 2). The ubiquitous Mn-Bi site mixing modifies or even changes the sign of the subtle inter-SL magnetic interactions, yielding a spatially inhomogeneous interlayer coupling. Further, a tunable exchange bias effect is observed in (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2), arising from the coupling between the FM and AFM components in the ground state. Our work highlights a new approach toward the fine-tuning of magnetism and paves the way for further study of quantum phenomena in (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2,...) as well as their magnetic applications.Comment: 9 pages, 4 figure

    Synchronization of chiral vortex nano-oscillators

    No full text
    The development of spintronic oscillators is driven by their potential applications in radio frequency telecommunication and neuromorphic computing. In this work, we propose a spintronic oscillator based on the chiral coupling in thin magnetic films with patterned anisotropy. With an in-plane magnetized disk imprinted on an out-of-plane magnetized slab, the oscillator takes a polar vortex-like magnetic structure in the disk stabilized by a strong Dzyaloshinskii–Moriya interaction. By means of micromagnetic simulations, we investigate its dynamic properties under applied spin current, and by placing an ensemble of oscillators in the near vicinity, we demonstrate their synchronization with different resonant frequencies. Finally, we show their potential application in neuromorphic computing using a network with six oscillators.ISSN:0003-6951ISSN:1077-311

    Engineering of Intrinsic Chiral Torques in Magnetic Thin Films Based on the Dzyaloshinskii-Moriya Interaction

    No full text
    The establishment of chiral coupling in thin magnetic films with inhomogeneous anisotropy has led to the development of artificial systems of fundamental and technological interest. The chiral coupling itself is enabled by the Dzyaloshinskii-Moriya interaction (DMI) enforced by the patterned noncollinear magnetization. Here, we create a domain wall track with out-of-plane magnetization coupled on each side to a narrow parallel strip with in-plane magnetization. With this we show that the chiral torques emerging from the DMI at the boundary between the regions of noncollinear magnetization in a single magnetic layer can be used to bias the domain wall velocity. To tune the chiral torques, the design of the magnetic racetracks can be modified by varying the width of the tracks or the width of the transition region between noncollinear magnetizations, reaching effective chiral magnetic fields of up to 7.8 mT. Furthermore, we show how the magnitude of the chiral torques can be estimated by measuring asymmetric domain wall velocities, and demonstrate spontaneous domain wall motion propelled by intrinsic torques even in the absence of any external driving force.ISSN:2331-701

    Accurate determination of Ba isotope ratios in barite samples by LA-MC-ICP-MS

    No full text
    In this study, we present a new high-precision method to analyze Ba isotope ratios in barite samples by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Barite international standard materials (NBS127, IAEA-SO-5 and IAEA-SO-6) were sintered under high pressure using a multi-anvil device to stabilize reference materials for in situ analysis of Ba isotopes in barite samples. The isobaric interference of 134Xe and polyatomic interference on Ba isotopes were found to be insignificant, and no significant matrix effect was found between the sintered standards and natural barite samples. Small ablation spots (16–44 μm) and a low ablation frequency (1 Hz) were used in this study. This high spatial resolution mode combined with a signal smoothing device improved the analytical precision by 12.5 times compared to the results obtained without a signal smoothing device. The long-term external precision obtained for δ137/134BaNBS127 is 0.09‰ (2SD). Two sintered barite international standard samples (IAEA-SO-5 and IAEA-SO-6) and six natural barite samples (Ba-FJ, Ba-FRA, Ba-YN, Ba-HN, 2JS-11 and LT-1) from different areas were measured by LA-MC-ICP-MS. The δ137/134BaNBS127 values of these sintered barite standards and natural barite samples determined by LA-MC-ICP-MS are in good agreement with those of double-spike measurements, confirming the reliability and accuracy of the proposed method for in situ analysis of Ba isotopes in barite. Additionally, the Ba isotope ratios of natural barite samples Ba-FJ and Ba-HN were found to be homogeneous, suggesting that these references can be used as in-house reference materials for LA-MC-ICP-MS analysis of Ba isotopes
    corecore